Happy Restart of the Earth's Tropical Orbital Period!
|
Posted
Tuesday, Jan. 1, 2013, at 7:00 AM ET
Happy new... um... orbital period?
Image credit: Shutterstock.
Image credit: Shutterstock.
Yay! It’s a new year!
But what does that mean, exactly?
The year, of course, is the time it takes for the Earth to go around
the Sun, right? Well, not exactly. It depends on what you mean by “year”
and how you measure it. This takes a wee bit of explaining, so while
the antacid is dissolving in your stomach to remedy last night’s
excesses, sit back and let me tell you the tale of the year.
Round and Round She Goes
On its way to the outer solar system, the Rosetta spacecraft took
this amazing picture of the crescent Earth. Click to engaiaenate.
Image credit: ESA ©2009 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA
Image credit: ESA ©2009 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA
Let’s take a look at the Earth from a distance. From our imaginary
point in space, we look down and see the Earth and the Sun. The Earth is
moving, orbiting the Sun. Of course it is, you think to yourself. But
how do you measure that? For something to be moving, it has to be moving
relative to something else. What can we use as a yardstick against
which to measure the Earth’s motion?
Well, we might notice as we float in space that we are surrounded by
billions of pretty stars. We can use them! So we mark the position of
the Earth and Sun using the stars as benchmarks, and then watch and
wait. Some time later, the Earth has moved in a big circle and is back
to where it started in reference to those stars. That’s called a
“sidereal year” (sidus is the Latin word for star). How long did that take?
Let’s say we used a stopwatch to measure the elapsed time. We’ll see
that it took the Earth 31,558,149 seconds (some people like to
approximate that as pi x 10 million = 31,415,926 seconds, which is an
easy way to be pretty dang close). But how many days is that?
Well, that’s a second complication. A “day” is how long it takes the
Earth to rotate once, but we’re back to that measurement problem again.
But hey, we used the stars once, let’s do it again! You stand on the
Earth and define a day as the time it takes for a star to go from
directly overhead to directly overhead again: a sidereal day. That takes
23 hours 56 minutes 4 seconds = 86,164 seconds. But wait a second (a
sidereal second?)—shouldn’t that be exactly equal to 24 hours? What
happened to those 3 minutes and 56 seconds?
I was afraid you’d ask that—but this turns out to be important.
It’s because the 24-hour day is based on the motion of the Sun in the sky, and not
the stars. During the course of that almost-but-not-quite 24 hours, the
Earth was busily orbiting the Sun, so it moved a little bit of the way
around its orbit (about a degree). If you measure the time it takes the
Sun to go around the sky once—a solar day—that takes 24 hours,
or 86,400 seconds. It’s longer than a sidereal day because the Earth has
moved a bit around the Sun during that day, and it takes a few extra
minutes for the Earth to spin a little bit more to “catch up” to the
Sun’s position in the sky.
As the Earth orbits the Sun, it has to spin a little extra to catch up over the course of the day. Click to embiggen.
Image credit: Nick Strobel
Image credit: Nick Strobel
A diagram from Nick Strobel’s fine site Astronomy Notes
(shown here; click to embiggen) helps explain this. See how the Earth
has to spin a little bit longer to get the Sun in the same part of the
sky? That extra 3 minutes and 56 seconds is the difference between a
solar and sidereal day.
OK, so we have a year of 31,558,149 seconds. If we divide that by 86,164 seconds/day we get 366.256 days per year.
Wait, that doesn’t sound right. You’ve always read it’s 365.25 days per year, right? But that first number, 366.256, is a year in sidereal days. In solar days, you divide the seconds in a year by 86,400 to get 365.256 days.
Phew! That number sounds right. But really, both numbers are
right. It just depends on what unit you use. It’s like saying something
is 1 inch long, and it’s also 2.54 centimeters long. Both are correct.
Having said all that, I have to admit that the 365.25 number this is not really correct. It’s a cheat. That’s really using a mean or
average solar day. The Sun is not a point source, it’s a disk, so you
have to measure a solar day using the center of the Sun, correcting for
the differences in Earth’s motion as it orbits the Sun (because it’s not
really a circle, it’s an ellipse) and and and. In the end, the solar
day is really just an average version of the day, because the actual length of the day changes every, um, day.
The Sun Rose by Any Other Name
Confused yet? Yeah, me too. It’s hard to keep all this straight. But
back to the year: That year we measured was a sidereal year. It turns
out that’s not the only way to measure a year.
You could, for example, measure it from the exact moment of the vernal equinox—a
specific time of the year when the Sun crosses directly over the
Earth’s equator in March—in one year to the vernal equinox in the next.
That’s called a tropical year. But why the heck would you want to use that? Ah, because of an interesting problem! Here’s a hint:
The Earth precesses! That means as it spins, it wobbles very
slightly, like a top does as it slows down. The Earth’s wobble means the
direction the Earth’s axis points in the sky changes over time. It
makes a big circle, taking over 20,000 years to complete one wobble.
Right now, the Earth’s axis points pretty close to the star Polaris, but in a few hundred years it’ll be noticeably off from Polaris.
Like a top wobbling, the Earth's axis changes orientation, called "precessing".
Remember too, that our seasons depend on the Earth’s tilt. Because of
this slow wobble, the tropical year (from season to season) does not
precisely match the sidereal year (using stars). The tropical year is a
wee bit shorter, by 21 minutes or so. If we didn’t account for this,
then every year the seasons would come 21 minutes earlier. Eventually
we’ll have winter in August, and summer in December! That’s fine if
you’re in Australia, but in the Northern Hemisphere this would cause
panic, rioting, people leaving comments in all caps, and so on.
So how do you account for this difference and not let the time of the
seasons wander all over the calendar? Easy: You adopt the tropical year
as your standard year. Done! You have to pick some way to
measure a year, so why not the one that keeps the seasons more or less
where they are now? This means that the apparent times of the rising and
setting of stars changes over time, but really, astronomers are the
only ones who care about that, and, not to self-aggrandize too much, they’re a smart bunch. They know how to compensate.
Okay, so where were we? Oh yeah—our standard year (also called a Gregorian year) is the tropical year, and it’s made up of 365.25 mean solar days (most of the time,
actually), each of which is 86,400 seconds long, pretty much just as
you’ve always been taught. And this way, the vernal equinox always
happens on or around March 21 every year.
Lend Me Your Year
But there are other “years,” too. The Earth orbits the Sun in an
ellipse, remember. When it’s closest to the Sun we call that perihelion
(which in 2013 is tomorrow, Jan. 2, and I’ll have a post about that as
well, never fear). If you measure the year from perihelion to perihelion
(called an anomalistic year, an old term used to
describe the shape of an orbit) you get yet a different number! That’s
because the orientation of the Earth’s orbital ellipse changes due to
the tugs of gravity from the other planets, taking about 100,000 years
for the ellipse to rotate once relative to the stars. Also, it’s not a
smooth effect, since the positions of the planets change, sometimes
tugging on us harder, sometimes not as hard. The average length of the
anomalistic year is 31,558,432 seconds, or 365.26 days. What is that in
sidereal days, you may ask? The answer is: I don’t really care. Do the
math yourself.
Let’s see, what else? Well, there’s a pile of years based on the
Moon, too, and the Sun’s position relative to it. There are ideal years,
using pure math with simplified inputs (like a massless planet with no
other planets in the solar system prodding it). There’s also the Julian
year, which is a defined year of 365.25 days (those would be the 86,400
seconds-long solar days). Astronomers actually use this because it makes
it easier to calculate the times between two events separated by many
years. I used them in my PhD research because I was watching an object
fade away over several years, and it made life a lot easier.
Where To Start?
One more thing. We have all these different years and decided to
adopt the tropical year for our calendars, which is all well and good.
But here’s an issue: Where do we start it?
The one thing I regret about the switch to digital odometers.
Image credit: Joe Shlabotnik on Flickr
Image credit: Joe Shlabotnik on Flickr
After all, the Earth’s orbit is an ellipse with no start or finish. It just keeps on keeping on. But there are some points in the orbit that are special, and we could use them. For example, as I mentioned above, we could use perihelion, when the Earth is closest to the Sun, or the vernal equinox. Those are actual physical events that have a well-defined meaning and time.
The problem, though, is that the calendar year doesn’t line up with them well. The date of perihelion changes year to year due to several factors (including, of all things, the Moon,
and the fact that we have to add a leap day every four years like we
did this year). In 2012 perihelion was on Jan. 5, but in 2013 it’s on
Jan. 2. Same thing with the equinox: It can range from March 20 to the
21st. That makes using orbital markers a tough standard.
Various countries used different dates for the beginning of the year. Some had already used Jan. 1
by the time the Gregorian (tropical) calendar was first decreed in
1582, but it took time for others to move to that date. England didn’t
until 1752 when it passed the Calendar Act.
Not surprisingly, there was a lot of religious influence on when to
start the new year; for a long time a lot of countries used March 25 as
the start of the new year, calling it Lady Day,
based on the assumed date when the archangel Gabriel told Mary she
would be the mother of God. Given that a lot of ancient Christian
holidays are actually based on older, Pagan holiday dates, and the fact
that this was on March 25th—very close to the equinox—makes this date at the very least suspicious.
Still, in the end, the date to start the new year is an arbitrary
choice, and Jan. 1 is as good a day as any. And as a happy side effect
it does help establish the Knuckle Rule.
Resolving the New Year
My New Year's resolution is worse than last year.
Image credit: Drew Saunders on Flickr
Image credit: Drew Saunders on Flickr
So there you go. As usual, astronomers have taken a simple concept
like “years” and turned it into a horrifying nightmare of nerdery and
math. But really, it’s not like we made all this stuff up. The fault
literally lies in the stars and not ourselves.
Now if you’re still curious about all this even after reading my
lengthy oratory, and you want to know more about some of these less
well-known years, then check out Wikipedia. It has lots of info, but
curiously I found it rather incomplete. I may submit something to them
as an update (like how many seconds are in each kind of year; they list
only how many days, which is useful but could be better).
I have to add one more bit of geekiness. While originally researching all this, I learned a new word! It’s nychthemeron,
which is the complete cycle of day and night. You and I, in general,
would call this a “day.” Personally, if someone dropped that word into
casual conversation, I’d challenge them to a duel with orreries at dawn.
Incidentally, after all this talk of durations and lengths, you might
be curious to know just when the Earth reaches perihelion, or when the
exact moment of the vernal equinox occurs. If you do, check out the U.S.
Naval Observatory website. It has tons of gory details about this
stuff.
Hmmmm, is there anything else to say here? (Counting on fingers.)
Years, days, seconds, yeah, got those. (Mumbling.) Nychthemeron, yeah,
Gregorian, tropical, anomalistic … oh wait! I know something I forgot to
say:
Happy New Year!
[Note: This article is a modified, updated version of one that has run on the Bad Astronomy blog in the past.]
0 Comments:
Post a Comment
<< Home