The Celestial Fog Comes on Little Cat Feet
Deep in the heart of the constellation of Scorpius, star formation
regions litter space. These clouds of gas and dust are collapsing,
birthing stars left and right. We see so many in this direction because
we’re looking toward the center of our Milky Way galaxy; it’s like
looking downtown and seeing more activity in that direction.
One of these clouds, at a distance of more than 5,000 light-years
from Earth, is called the Cat’s Paw nebula. When you use a “regular”
telescope that sees in visible light, as our eyes do, the hydrogen gas
glows in patches, resembling the bottoms of our household pets’ feet.
But when you look in the submillimeter, wavelengths of light well
outside what our eyes can see, the dust that is opaque and black in
visible light comes alive, like a fire strewn through a network of dark
caverns:
This view is from the Atacama Pathfinder EXperiment (APEX)
telescope, located in the high desert in Chile. At an elevation of a
staggering (literally) 5,100 meters (16,700 feet), the air is so thin
that the 'scope is literally above most of the atmosphere. That’s good,
because water vapor in the air strongly absorbs light with submillimeter
wavelengths; to a telescope like APEX a little bit of moisture in the
air might as well be a steel lid across the observatory.
A new camera, called Artemis, has just been installed on APEX,
and this is one of the first images it took. Artemis is a fairly
advanced camera, able to see larger swaths of the submillimeter sky than
cameras have before it. Affixed to APEX, it provides amazing
sensitivity and field of view.
The shot of the Cat’s Paw is pretty amazing. In general, objects emit
light depending on their temperature: Something very hot (like a star)
will emit light with shorter wavelengths and be bright. Colder objects
(like the dust in the Cat’s Paw) will emit much longer wavelength light
and be faint. The dust seen by Artemis in the Cat’s Paw is beyond cold;
it glows at a chilly 8 Kelvin—minus 265 degrees Celsius or minus 445
degrees Fahrenheit, just a few degrees above absolute zero. Dust like
this chokes star-forming clouds, which we usually see in visible light as dark lanes and filaments strewn across them. But to Artemis, they are like flames in the interstellar canvas.
The Artemis observations have been superposed on the stars and gas
seen by the European Southern Observatory’s VISTA telescope, which views
the skies in infrared, just outside what our eyes can see. In it, you
can just see a couple of the soap-bubble features in the Cat’s Paw,
places where the furious light and winds from young, massive stars have
compressed the gas around them, snow-plowing it into thin spherical
shells light-years across. The forces at work here are huge and fierce;
baby stars are a tempestuous lot.
Because the Cat’s Paw is a good example of a large, nearby stellar
nursery, it’s a favorite target for astronomers. Not long ago, it was observed using the space-based telescopes Herschel and Spitzer, as well as the ground-based NEWFIRM infrared telescope:
That image is in the far-infrared, where warmer dust glows (shown in
green). The bright red and orange spots are newly born massive stars,
and as you can see, they form along that long filament seen in the APEX
image. Dense dust is where new stars are born! That’s not obvious in
either the near-infrared or submillimeter images alone. But when you
combine the power of telescopes that see across the electromagnetic
spectrum, much more of the real Universe becomes clear.
And the Cat’s Paw isn’t done yet. The thick clots of dust seen by
Artemis and the other observatories is an indication that there is more
material from which stars can be woven, and that the nebula will make
many more before its day is done.
Artemis is new, and still being tested. The image above is a down
payment on the science it promises, and clearly, what it will certainly
be able to deliver.
0 Comments:
Post a Comment
<< Home