When the Dying Breaths of Ancient Stars Align
SLATE
Posted
Thursday, Sept. 5, 2013, at 8:00 AM
The proto-planetary nebula named, prosaically, IRAS 13208-6020, as
seen by Hubble. It has extended lobes on either side; nebulae like this
found near the galaxy center are mysteriously aligned.
Photo by ESA/Hubble & NASA
Photo by ESA/Hubble & NASA
Astronomers just announced something
that I have to admit has me scratching my head: Near the galactic core,
planetary nebulae—the winds from dying stars—tend to have their axes
aligned along the plane of our galaxy. I know, that sounds a bit
esoteric, but that’s only because it is. Still, it actually is really weird. And it may have some interesting implications for how stars form in our galaxy.
This gets pretty technical, so I’ll boil it down somewhat for you, but it’ll still be a little technical. So let me show you some of the guts of this, and then if you want you can skip to the bottom to get the overview.
The Stellar Guts
OK, first off, what’s a planetary nebula? I’ve written about them eleventy billion times
because I love them (I studied them for both my Masters and PhD,
actually). When a star like the Sun gets old and starts to die, it blows
off a slow dense wind of gas, like a solar wind. After a while this
starts to deplete the outer layers of the star, exposing the hotter
interior. The wind speeds up, and new gas blown from the stars slams
into the older, slower gas. The collision compresses the gas, forming
cool and weird shapes.
The planetary nebula NGC 7026 is butterfly-shaped, with lobes like wings on the sides.
Photo by ESA/Hubble and NASA
Photo by ESA/Hubble and NASA
If the dying star is in a binary system, that is, it orbits another
star, the early, slower wind tends to blow primarily along the equator
of that orbit. Think of yourself going around a fast carousel, and you
throw a ball: it’ll tend to go out, away from you, parallel to
the ground. Same thing with these stars. You wind up with a dense ring
of material around the two stars. But then the faster wind kicks in. It
sees more material around the equator, and less along the poles, so it’s
easier to blow up and down, along the axis of the binary orbit. In the
carousel analogy, it’s like you’ve thrown so many balls early on that
they’ve piled up around you, so later ones have an easier time going up
and down, rather than trying to plow through the ones on the ground.
In the end, you can get fantastic shapes to these nebulae. Many have elongated structures, double lobes, extending away. Some are butterfly shaped, too, with wings of material reaching out. Many planetary nebulae, though, are not in binaries, and look more circular.
Abell 39 is an almost perfect circle in space (really, a sphere).
Photo by WIYN/NOAO/NSF
Photo by WIYN/NOAO/NSF
Imagine drawing a line along the lobes of an elongated (also called a
bipolar) nebula. Now look at hundreds of them. You’d expect they’d
point every which way, because their orientations only depend on physics
internal to the stars themselves; that is, every one is unique. They
don’t interact with each other, and different binary star systems should
have their orbits at all different angles. It’s like throwing a bunch
of pencils in the air and taking a photo of them; they’d be pointing in
all different directions. Planetary nebulae should be the same way.
When Stars Align
But that’s not what the astronomers found. Our
galaxy, the Milky Way, is a flat disk with a spherical bulge of stars
in the middle. The astronomers looked at 130 planetary nebulae located
very close to the center of the galaxy, in the middle of the central
bulge. What they found is that the elongated nebulae were far more
likely to have their long axis parallel to the galactic disk than
perpendicular to it, like pencils floating in water. The odds of this
happening by random chance, they determined, was very small.
Schematic of the Milky Way, seen face-on (left) and edge-on (right). Click to galactinate.
Photo via University of Oregon Physics Dept. modified by Phil Plait
Photo via University of Oregon Physics Dept. modified by Phil Plait
In other words, some bizarre force was reaching out from the center
of the galaxy and lining up all those nebulae. That’s the weird part.
But we may know what it is! That force, it turns out, may be the
galaxy’s magnetic field. And it doesn’t affect the planetary nebulae,
really, but the stars themselves as they formed!
We know that stars form from gas clouds, and we also know that some
of those gas clouds have magnetic fields, like giant
quadrillion-kilometer-long bar magnets (though with way more complicated
fields). The galaxy itself has a magnetic field, and the clouds near
the galactic center do tend to have their fields lined up with the
galaxy’s. So it’s not too far-fetched to think that when those clouds
form stars, the orbits of the stars will be affected too.
We already think magnetic fields affect star formation, though just
how is unclear (the physics is incredibly complicated). Still, overall,
it makes some sense that as the cloud collapses to form stars, the
magnetic field gently shapes that collapse. The stars that form would
then become aligned with the magnetic field, and in the end you get
binary stars which have orbits aligned with the galaxy’s plane—in this
case, aligned along the disk of the galaxy, again like pencils floating
in water (as opposed to buoys that stick out of the water, or at some
angle in between). They may point in different directions, but they all
wind up with axes aligned along the plane.
Interestingly, when the astronomers looked at non-elongated nebulae, they did not
see this alignment. It turns out that the magnetic fields of clouds
would have a greater effect on wide binary stars, the kind that form
elongated nebulae, than they would on single stars. The pattern makes
some sort of sense.
The Core of the Problem
Amazingly, what all this means is that the magnetic field of the
galaxy itself—or at least, very near the center of the galaxy—weak as it
is can profoundly shape the way stars form there. The way the stars
spin and orbit each other line up, a bit like iron filings sprinkled
over a sheet of paper with a bar magnet underneath it. But this only
happens when the stars form; the magnetic field probably has little or
no effect on them today.
Mind you, the stars the astronomers observed are billions of years
old; they take a long time to age and eventually die. So really, what
we’re seeing are the ghostly fingers of the Milky Way’s ancient
magnetism, reaching across the eons and leaving its fingerprints on
stars as they die today.
It’s not clear, though, what other effects this might have. Our Sun
and planets are located pretty far out form the core, halfway or so to
the galaxy’s edge. Planetary nebulae out here don’t appear to be
particularly aligned. Maybe the magnetic field strength isn’t as
powerful this far out, and maybe things have changed since the stars in
our neighborhood were young.
But it’s fascinating to think that magnetism could have an affect
that strong even near the hub of the Milky Way. It’s the first time this
has been so clearly seen, so maybe we’ll find other signs of this
influence as time goes on. And this may yet show some effect on the
greater galaxy at large, perhaps when it was younger and more active.
The one thing that’s for sure is this shows us that our local island
Universe, as galaxies were once called, has a few surprises up its
sleeve left for us to discover.
0 Comments:
Post a Comment
<< Home